- Docs
- actableai.bayesian_regression package
actableai.bayesian_regression package
Submodules
actableai.bayesian_regression.utils module
-
actableai.bayesian_regression.utils.expand_polynomial_categorical(feature_data: pandas.core.frame.DataFrame, polynomial_degree: int, normalize: bool) → Tuple[pandas.core.frame.DataFrame, List[str]]
- Generates a new DataFrame with extra features :
- Exponent of numerical features
- Cross Intersection of variables
- OneHot encoded values for categorical features
- Parameters
- feature_data (pd.DataFrame) – DataFrame with the original features. Handles only numerical and categorical features
- polynomial_degree (int) – Maximum polynomial degree to generate cross intersection and exponent
- normalize (bool) – If we want the Data to be normalized
- Returns
- pd.DataFrame: New DataFrame with generated features
- List[str]: Names of OneHotEncoded variables
- Return type
Tuple
Module contents