actableai.causal.discover.algorithms.deci.DeciRunner(p: actableai.causal.discover.algorithms.payloads.DeciPayload, progress_callback: Optional[Callable[[float], None]] = None)¶Bases: actableai.causal.discover.algorithms.commons.base_runner.CausalDiscoveryRunner
do_causal_discovery() Dict[str, list]¶name = 'DECI'¶actableai.causal.discover.algorithms.direct_lingam.DirectLiNGAMRunner(p: actableai.causal.discover.algorithms.payloads.DirectLiNGAMPayload, progress_callback: Optional[Callable[[float], None]] = None)¶Bases: actableai.causal.discover.algorithms.commons.base_runner.CausalDiscoveryRunner
do_causal_discovery() Dict[str, list]¶name = 'DirectLiNGAM'¶actableai.causal.discover.algorithms.notears.NotearsRunner(p: actableai.causal.discover.algorithms.payloads.NotearsPayload, progress_callback: Optional[Callable[[float], None]] = None)¶Bases: actableai.causal.discover.algorithms.commons.base_runner.CausalDiscoveryRunner
do_causal_discovery() Dict[str, list]¶name = 'Notears'¶actableai.causal.discover.algorithms.payloads.ATEDetails(*, reference: Optional[Union[float, str]] = None, intervention: Optional[Union[float, str]] = None, nature: Optional[actableai.causal.discover.algorithms.payloads.CausalVariableNature] = None)¶Bases: pydantic.main.BaseModel
intervention: Optional[Union[float, str]]¶nature: Optional[actableai.causal.discover.algorithms.payloads.CausalVariableNature]¶reference: Optional[Union[float, str]]¶actableai.causal.discover.algorithms.payloads.CausalDiscoveryPayload(*, dataset: actableai.causal.discover.algorithms.payloads.Dataset, normalization: actableai.causal.discover.algorithms.payloads.NormalizationOptions = NormalizationOptions(with_mean=True, with_std=True), constraints: actableai.causal.discover.algorithms.payloads.Constraints, causal_variables: List[actableai.causal.discover.algorithms.payloads.CausalVariable] = [])¶Bases: pydantic.main.BaseModel
causal_variables: List[actableai.causal.discover.algorithms.payloads.CausalVariable]¶set_causal_variables(values: Dict[str, Any]) Dict[str, Any]¶actableai.causal.discover.algorithms.payloads.CausalVariable(*, name: str, nature: Optional[actableai.causal.discover.algorithms.payloads.CausalVariableNature] = None)¶Bases: pydantic.main.BaseModel
from_dataset(column: str, dataset: actableai.causal.discover.algorithms.payloads.Dataset) actableai.causal.discover.algorithms.payloads.CausalVariable¶name: str¶nature: Optional[actableai.causal.discover.algorithms.payloads.CausalVariableNature]¶actableai.causal.discover.algorithms.payloads.CausalVariableNature(value)¶Bases: str, enum.Enum
An enumeration.
Binary = 'Binary'¶CategoricalNominal = 'Categorical Nominal'¶CategoricalOrdinal = 'Categorical Ordinal'¶Continuous = 'Continuous'¶Discrete = 'Discrete'¶Excluded = 'Excluded'¶actableai.causal.discover.algorithms.payloads.Constraints(*, causes: List[str], effects: List[str], forbiddenRelationships: List[Tuple[str, str]], potentialRelationships: Optional[List[Tuple[str, str]]] = None)¶Bases: pydantic.main.BaseModel
causes: List[str]¶effects: List[str]¶forbiddenRelationships: List[Tuple[str, str]]¶potentialRelationships: Optional[List[Tuple[str, str]]]¶actableai.causal.discover.algorithms.payloads.Dataset(*, data: Dict[str, List[Any]])¶Bases: pydantic.main.BaseModel
data: Dict[str, List[Any]]¶actableai.causal.discover.algorithms.payloads.DeciAteOptions(*, Ngraphs: Optional[int] = 1, Nsamples_per_graph: Optional[int] = 5000, most_likely_graph: Optional[int] = True, ate_details_by_name: Dict[str, actableai.causal.discover.algorithms.payloads.ATEDetails] = {})¶Bases: pydantic.main.BaseModel
Ngraphs: Optional[int]¶Nsamples_per_graph: Optional[int]¶ate_details_by_name: Dict[str, actableai.causal.discover.algorithms.payloads.ATEDetails]¶most_likely_graph: Optional[int]¶actableai.causal.discover.algorithms.payloads.DeciModelOptions(*, base_distribution_type: Literal['gaussian', 'spline'] = 'spline', spline_bins: int = 8, imputation: bool = False, lambda_dag: float = 100.0, lambda_sparse: float = 5.0, tau_gumbel: float = 1.0, var_dist_A_mode: Literal['simple', 'enco', 'true', 'three'] = 'three', imputer_layer_sizes: Optional[List[int]] = None, mode_adjacency: Literal['upper', 'lower', 'learn'] = 'learn', norm_layers: bool = True, res_connection: bool = True, encoder_layer_sizes: Optional[List[int]] = [32, 32], decoder_layer_sizes: Optional[List[int]] = [32, 32], cate_rff_n_features: int = 3000, cate_rff_lengthscale: Union[int, float, List[float], Tuple[float, float]] = 1)¶Bases: pydantic.main.BaseModel
base_distribution_type: Literal['gaussian', 'spline']¶cate_rff_lengthscale: Union[int, float, List[float], Tuple[float, float]]¶cate_rff_n_features: int¶decoder_layer_sizes: Optional[List[int]]¶encoder_layer_sizes: Optional[List[int]]¶imputation: bool¶imputer_layer_sizes: Optional[List[int]]¶lambda_dag: float¶lambda_sparse: float¶mode_adjacency: Literal['upper', 'lower', 'learn']¶norm_layers: bool¶res_connection: bool¶spline_bins: int¶tau_gumbel: float¶var_dist_A_mode: Literal['simple', 'enco', 'true', 'three']¶actableai.causal.discover.algorithms.payloads.DeciPayload(*, dataset: actableai.causal.discover.algorithms.payloads.Dataset, normalization: actableai.causal.discover.algorithms.payloads.NormalizationOptions = NormalizationOptions(with_mean=True, with_std=True), constraints: actableai.causal.discover.algorithms.payloads.Constraints, causal_variables: List[actableai.causal.discover.algorithms.payloads.CausalVariable] = [], model_options: actableai.causal.discover.algorithms.payloads.DeciModelOptions = DeciModelOptions(base_distribution_type='spline', spline_bins=8, imputation=False, lambda_dag=100.0, lambda_sparse=5.0, tau_gumbel=1.0, var_dist_A_mode='three', imputer_layer_sizes=None, mode_adjacency='learn', norm_layers=True, res_connection=True, encoder_layer_sizes=[32, 32], decoder_layer_sizes=[32, 32], cate_rff_n_features=3000, cate_rff_lengthscale=1), training_options: actableai.causal.discover.algorithms.payloads.DeciTrainingOptions = DeciTrainingOptions(learning_rate=0.03, batch_size=512, standardize_data_mean=False, standardize_data_std=False, rho=10.0, safety_rho=10000000000000.0, alpha=0.0, safety_alpha=10000000000000.0, tol_dag=0.001, progress_rate=0.25, max_steps_auglag=20, max_auglag_inner_epochs=1000, max_p_train_dropout=0.25, reconstruction_loss_factor=1.0, anneal_entropy='noanneal'), ate_options: actableai.causal.discover.algorithms.payloads.DeciAteOptions = DeciAteOptions(Ngraphs=1, Nsamples_per_graph=5000, most_likely_graph=True, ate_details_by_name={}), model_save_dir: str = None)¶Bases: actableai.causal.discover.algorithms.payloads.CausalDiscoveryPayload
model_save_dir: str¶training_options: actableai.causal.discover.algorithms.payloads.DeciTrainingOptions¶actableai.causal.discover.algorithms.payloads.DeciTrainingOptions(*, learning_rate: float = 0.03, batch_size: int = 512, standardize_data_mean: bool = False, standardize_data_std: bool = False, rho: float = 10.0, safety_rho: float = 10000000000000.0, alpha: float = 0.0, safety_alpha: float = 10000000000000.0, tol_dag: float = 0.001, progress_rate: float = 0.25, max_steps_auglag: int = 20, max_auglag_inner_epochs: int = 1000, max_p_train_dropout: float = 0.25, reconstruction_loss_factor: float = 1.0, anneal_entropy: Literal['linear', 'noanneal'] = 'noanneal')¶Bases: pydantic.main.BaseModel
alpha: float¶anneal_entropy: Literal['linear', 'noanneal']¶batch_size: int¶learning_rate: float¶max_auglag_inner_epochs: int¶max_p_train_dropout: float¶max_steps_auglag: int¶progress_rate: float¶reconstruction_loss_factor: float¶rho: float¶safety_alpha: float¶safety_rho: float¶standardize_data_mean: bool¶standardize_data_std: bool¶tol_dag: float¶actableai.causal.discover.algorithms.payloads.DirectLiNGAMPayload(*, dataset: actableai.causal.discover.algorithms.payloads.Dataset, normalization: actableai.causal.discover.algorithms.payloads.NormalizationOptions = NormalizationOptions(with_mean=True, with_std=True), constraints: actableai.causal.discover.algorithms.payloads.Constraints, causal_variables: List[actableai.causal.discover.algorithms.payloads.CausalVariable] = [])¶Bases: actableai.causal.discover.algorithms.payloads.CausalDiscoveryPayload
causal_variables: List[actableai.causal.discover.algorithms.payloads.CausalVariable]¶actableai.causal.discover.algorithms.payloads.NormalizationOptions(*, with_mean: bool = True, with_std: bool = True)¶Bases: pydantic.main.BaseModel
with_mean: bool¶with_std: bool¶actableai.causal.discover.algorithms.payloads.NotearsPayload(*, dataset: actableai.causal.discover.algorithms.payloads.Dataset, normalization: actableai.causal.discover.algorithms.payloads.NormalizationOptions = NormalizationOptions(with_mean=True, with_std=True), constraints: actableai.causal.discover.algorithms.payloads.Constraints, causal_variables: List[actableai.causal.discover.algorithms.payloads.CausalVariable] = [], max_iter: int = 100)¶Bases: actableai.causal.discover.algorithms.payloads.CausalDiscoveryPayload
max_iter: int¶actableai.causal.discover.algorithms.payloads.PCPayload(*, dataset: actableai.causal.discover.algorithms.payloads.Dataset, normalization: actableai.causal.discover.algorithms.payloads.NormalizationOptions = NormalizationOptions(with_mean=True, with_std=True), constraints: actableai.causal.discover.algorithms.payloads.Constraints, causal_variables: List[actableai.causal.discover.algorithms.payloads.CausalVariable] = [], variant: Literal['original', 'stable'] = 'original', alpha: float = 0.05, ci_test: Literal['gauss', 'g2', 'chi2'] = 'gauss')¶Bases: actableai.causal.discover.algorithms.payloads.CausalDiscoveryPayload
alpha: float¶ci_test: Literal['gauss', 'g2', 'chi2']¶variant: Literal['original', 'stable']¶actableai.causal.discover.algorithms.pc.PCRunner(p: actableai.causal.discover.algorithms.payloads.PCPayload, progress_callback: Optional[Callable[[float], None]] = None)¶Bases: actableai.causal.discover.algorithms.commons.base_runner.CausalDiscoveryRunner
do_causal_discovery() Dict[str, list]¶name = 'PC'¶