actableai.causal.exposure.model.confidence_interval_models.ConfidenceIntervalParams(*, estimate: actableai.causal.exposure.model.estimate_effect_models.EstimateResult)¶Bases: pydantic.main.BaseModel
actableai.causal.exposure.model.estimate_effect_models.CausalGraphModelSpec(*, type: str, label: str, confounders: List[str], effect_modifiers: List[str], treatment: str, outcome: str, causal_graph: str)¶Bases: actableai.causal.exposure.model.estimate_effect_models.ModelSpec
causal_graph: str¶outcome: str¶treatment: str¶actableai.causal.exposure.model.estimate_effect_models.EstimateEffectRequestBody(*, population_specs: List[actableai.causal.exposure.model.estimate_effect_models.PopulationSpec], treatment_specs: List[actableai.causal.exposure.model.estimate_effect_models.TreatmentSpec], outcome_specs: List[actableai.causal.exposure.model.estimate_effect_models.OutcomeSpec], model_specs: List[actableai.causal.exposure.model.estimate_effect_models.ModelSpec], estimator_specs: List[actableai.causal.exposure.model.estimate_effect_models.EstimatorSpec])¶Bases: pydantic.main.BaseModel
estimator_specs: List[actableai.causal.exposure.model.estimate_effect_models.EstimatorSpec]¶model_specs: List[actableai.causal.exposure.model.estimate_effect_models.ModelSpec]¶outcome_specs: List[actableai.causal.exposure.model.estimate_effect_models.OutcomeSpec]¶population_specs: List[actableai.causal.exposure.model.estimate_effect_models.PopulationSpec]¶treatment_specs: List[actableai.causal.exposure.model.estimate_effect_models.TreatmentSpec]¶actableai.causal.exposure.model.estimate_effect_models.EstimateResult(*, id: str, population_type: str, population_name: str, population_size: int, treatment_type: str, treatment: str, outcome_type: str, outcome: str, causal_model: str, estimator: str, causal_model_graph: dowhy.causal_model.CausalModel, identified_estimand: dowhy.causal_identifier.IdentifiedEstimand, estimate: dowhy.causal_estimator.CausalEstimate, covariate_balance: Optional[Dict[str, Any]] = None)¶Bases: pydantic.main.BaseModel
causal_model: str¶causal_model_graph: dowhy.causal_model.CausalModel¶covariate_balance: Optional[Dict[str, Any]]¶estimate: dowhy.causal_estimator.CausalEstimate¶estimator: str¶id: str¶identified_estimand: dowhy.causal_identifier.IdentifiedEstimand¶outcome: str¶outcome_type: str¶population_name: str¶population_size: int¶population_type: str¶to_dict()¶treatment: str¶treatment_type: str¶actableai.causal.exposure.model.estimate_effect_models.EstimatorSpec(*, type: str, label: str, require_propensity_score: bool, method_name: str, method_params: Optional[Dict[str, Any]] = None)¶Bases: pydantic.main.BaseModel
label: str¶method_name: str¶method_params: Optional[Dict[str, Any]]¶require_propensity_score: bool¶type: str¶actableai.causal.exposure.model.estimate_effect_models.ModelSpec(*, type: str, label: str, confounders: List[str], effect_modifiers: List[str])¶Bases: pydantic.main.BaseModel
confounders: List[str]¶effect_modifiers: List[str]¶label: str¶type: str¶actableai.causal.exposure.model.estimate_effect_models.OutcomeSpec(*, type: str, label: str, variable: str)¶Bases: pydantic.main.BaseModel
label: str¶type: str¶variable: str¶actableai.causal.exposure.model.estimate_effect_models.PopulationSpec(*, type: str, label: str, dataframe: str, variable: Optional[str] = None)¶Bases: pydantic.main.BaseModel
dataframe: str¶label: str¶type: str¶variable: Optional[str]¶actableai.causal.exposure.model.estimate_effect_models.PopulationSpecDataFrame(*, type: str, label: str, dataframe: pandas.core.frame.DataFrame, variable: Optional[str] = None)¶Bases: actableai.causal.exposure.model.estimate_effect_models.PopulationSpec
dataframe: pandas.core.frame.DataFrame¶actableai.causal.exposure.model.estimate_effect_models.Specification(*, population: actableai.causal.exposure.model.estimate_effect_models.PopulationSpecDataFrame, treatment: actableai.causal.exposure.model.estimate_effect_models.TreatmentSpec, outcome: actableai.causal.exposure.model.estimate_effect_models.OutcomeSpec, model: actableai.causal.exposure.model.estimate_effect_models.CausalGraphModelSpec, estimator: actableai.causal.exposure.model.estimate_effect_models.EstimatorSpec)¶Bases: pydantic.main.BaseModel
is_valid() bool¶actableai.causal.exposure.model.identify_estimand_models.IdentifyEstimandResult(*, estimate_possibility: bool, backdoor_variables: List[str], frontdoor_variables: List[str], instrumental_variables: List[str], causal_model: dowhy.causal_model.CausalModel)¶Bases: pydantic.main.BaseModel
backdoor_variables: List[str]¶causal_model: dowhy.causal_model.CausalModel¶estimate_possibility: bool¶frontdoor_variables: List[str]¶instrumental_variables: List[str]¶to_dict()¶actableai.causal.exposure.model.refute_estimate_models.RefuterResult(*, estimate_id: str, refuter: str, result: int)¶Bases: pydantic.main.BaseModel
estimate_id: str¶refuter: str¶result: int¶to_dict()¶actableai.causal.exposure.model.refute_estimate_models.RefuterSpec(*, num_simulations: int, method_name: str, estimate: actableai.causal.exposure.model.estimate_effect_models.EstimateResult)¶Bases: pydantic.main.BaseModel
method_name: str¶num_simulations: int¶actableai.causal.exposure.model.response.NumberOfExecutionsResult(*, count: int)¶Bases: pydantic.main.BaseModel
count: int¶actableai.causal.exposure.model.response.StatusModel(*, status: str, completed: int, pending: int, failed: int, results: Optional[Union[List[Union[actableai.causal.exposure.model.refute_estimate_models.RefuterResult, actableai.causal.exposure.model.estimate_effect_models.EstimateResult, actableai.causal.exposure.model.confidence_interval_models.ConfidenceIntervalResult, actableai.causal.exposure.model.shap_interpreter_models.ListShapInterpreterResult]], actableai.causal.exposure.model.significance_test_models.SignificanceTestResult]] = None)¶Bases: pydantic.main.BaseModel
completed: int¶failed: int¶pending: int¶results: Optional[Union[List[Union[actableai.causal.exposure.model.refute_estimate_models.RefuterResult, actableai.causal.exposure.model.estimate_effect_models.EstimateResult, actableai.causal.exposure.model.confidence_interval_models.ConfidenceIntervalResult, actableai.causal.exposure.model.shap_interpreter_models.ListShapInterpreterResult]], actableai.causal.exposure.model.significance_test_models.SignificanceTestResult]]¶status: str¶to_dict()¶actableai.causal.exposure.model.shap_interpreter_models.ListShapInterpreterResult(*, results: List[actableai.causal.exposure.model.shap_interpreter_models.ShapInterpreterResult])¶Bases: pydantic.main.BaseModel
to_dict()¶actableai.causal.exposure.model.shap_interpreter_models.ShapInterpreterResult(*, estimate_id: str, shap_population_name: int, shap_treatment: float, shap_outcome: int, shap_causal_model: float, shap_estimator: float)¶Bases: pydantic.main.BaseModel
estimate_id: str¶shap_causal_model: float¶shap_estimator: float¶shap_outcome: int¶shap_population_name: int¶shap_treatment: float¶to_dict()¶actableai.causal.exposure.model.significance_test_models.ComputeNullEffectSpec(*, estimate: dowhy.causal_estimator.CausalEstimate, identified_estimand: dowhy.causal_identifier.IdentifiedEstimand, causal_model: dowhy.causal_model.CausalModel, original_effect: float)¶Bases: pydantic.main.BaseModel
causal_model: dowhy.causal_model.CausalModel¶estimate: dowhy.causal_estimator.CausalEstimate¶identified_estimand: dowhy.causal_identifier.IdentifiedEstimand¶original_effect: float¶actableai.causal.exposure.model.significance_test_models.PropensityScoreSpec(*, estimate_id: str, identified_estimand: dowhy.causal_identifier.IdentifiedEstimand, causal_model: dowhy.causal_model.CausalModel, estimate: dowhy.causal_estimator.CausalEstimate)¶Bases: pydantic.main.BaseModel
causal_model: dowhy.causal_model.CausalModel¶estimate: dowhy.causal_estimator.CausalEstimate¶estimate_id: str¶identified_estimand: dowhy.causal_identifier.IdentifiedEstimand¶