actableai.causal.exposure.model package

Submodules

actableai.causal.exposure.model.confidence_interval_models module

class actableai.causal.exposure.model.confidence_interval_models.ConfidenceIntervalParams(*, estimate: actableai.causal.exposure.model.estimate_effect_models.EstimateResult)

Bases: pydantic.main.BaseModel

estimate: actableai.causal.exposure.model.estimate_effect_models.EstimateResult
class actableai.causal.exposure.model.confidence_interval_models.ConfidenceIntervalResult(*, estimate_id: str, lower_bound: float, upper_bound: float)

Bases: pydantic.main.BaseModel

estimate_id: str
lower_bound: float
to_dict()
upper_bound: float

actableai.causal.exposure.model.estimate_effect_models module

class actableai.causal.exposure.model.estimate_effect_models.CausalGraphModelSpec(*, type: str, label: str, confounders: List[str], effect_modifiers: List[str], treatment: str, outcome: str, causal_graph: str)

Bases: actableai.causal.exposure.model.estimate_effect_models.ModelSpec

causal_graph: str
outcome: str
treatment: str
class actableai.causal.exposure.model.estimate_effect_models.EstimateEffectRequestBody(*, population_specs: List[actableai.causal.exposure.model.estimate_effect_models.PopulationSpec], treatment_specs: List[actableai.causal.exposure.model.estimate_effect_models.TreatmentSpec], outcome_specs: List[actableai.causal.exposure.model.estimate_effect_models.OutcomeSpec], model_specs: List[actableai.causal.exposure.model.estimate_effect_models.ModelSpec], estimator_specs: List[actableai.causal.exposure.model.estimate_effect_models.EstimatorSpec])

Bases: pydantic.main.BaseModel

estimator_specs: List[actableai.causal.exposure.model.estimate_effect_models.EstimatorSpec]
model_specs: List[actableai.causal.exposure.model.estimate_effect_models.ModelSpec]
outcome_specs: List[actableai.causal.exposure.model.estimate_effect_models.OutcomeSpec]
population_specs: List[actableai.causal.exposure.model.estimate_effect_models.PopulationSpec]
treatment_specs: List[actableai.causal.exposure.model.estimate_effect_models.TreatmentSpec]
class actableai.causal.exposure.model.estimate_effect_models.EstimateResult(*, id: str, population_type: str, population_name: str, population_size: int, treatment_type: str, treatment: str, outcome_type: str, outcome: str, causal_model: str, estimator: str, causal_model_graph: dowhy.causal_model.CausalModel, identified_estimand: dowhy.causal_identifier.IdentifiedEstimand, estimate: dowhy.causal_estimator.CausalEstimate, covariate_balance: Optional[Dict[str, Any]] = None)

Bases: pydantic.main.BaseModel

class Config

Bases: object

arbitrary_types_allowed = True
causal_model: str
causal_model_graph: dowhy.causal_model.CausalModel
covariate_balance: Optional[Dict[str, Any]]
estimate: dowhy.causal_estimator.CausalEstimate
estimator: str
id: str
identified_estimand: dowhy.causal_identifier.IdentifiedEstimand
outcome: str
outcome_type: str
population_name: str
population_size: int
population_type: str
to_dict()
treatment: str
treatment_type: str
class actableai.causal.exposure.model.estimate_effect_models.EstimatorSpec(*, type: str, label: str, require_propensity_score: bool, method_name: str, method_params: Optional[Dict[str, Any]] = None)

Bases: pydantic.main.BaseModel

label: str
method_name: str
method_params: Optional[Dict[str, Any]]
require_propensity_score: bool
type: str
class actableai.causal.exposure.model.estimate_effect_models.ModelSpec(*, type: str, label: str, confounders: List[str], effect_modifiers: List[str])

Bases: pydantic.main.BaseModel

confounders: List[str]
effect_modifiers: List[str]
label: str
type: str
class actableai.causal.exposure.model.estimate_effect_models.OutcomeSpec(*, type: str, label: str, variable: str)

Bases: pydantic.main.BaseModel

label: str
type: str
variable: str
class actableai.causal.exposure.model.estimate_effect_models.PopulationSpec(*, type: str, label: str, dataframe: str, variable: Optional[str] = None)

Bases: pydantic.main.BaseModel

dataframe: str
label: str
type: str
variable: Optional[str]
class actableai.causal.exposure.model.estimate_effect_models.PopulationSpecDataFrame(*, type: str, label: str, dataframe: pandas.core.frame.DataFrame, variable: Optional[str] = None)

Bases: actableai.causal.exposure.model.estimate_effect_models.PopulationSpec

class Config

Bases: object

arbitrary_types_allowed = True
dataframe: pandas.core.frame.DataFrame
class actableai.causal.exposure.model.estimate_effect_models.Specification(*, population: actableai.causal.exposure.model.estimate_effect_models.PopulationSpecDataFrame, treatment: actableai.causal.exposure.model.estimate_effect_models.TreatmentSpec, outcome: actableai.causal.exposure.model.estimate_effect_models.OutcomeSpec, model: actableai.causal.exposure.model.estimate_effect_models.CausalGraphModelSpec, estimator: actableai.causal.exposure.model.estimate_effect_models.EstimatorSpec)

Bases: pydantic.main.BaseModel

estimator: actableai.causal.exposure.model.estimate_effect_models.EstimatorSpec
is_valid() bool
model: actableai.causal.exposure.model.estimate_effect_models.CausalGraphModelSpec
outcome: actableai.causal.exposure.model.estimate_effect_models.OutcomeSpec
population: actableai.causal.exposure.model.estimate_effect_models.PopulationSpecDataFrame
treatment: actableai.causal.exposure.model.estimate_effect_models.TreatmentSpec
class actableai.causal.exposure.model.estimate_effect_models.TreatmentSpec(*, type: str, label: str, variable: str)

Bases: pydantic.main.BaseModel

label: str
type: str
variable: str

actableai.causal.exposure.model.identify_estimand_models module

class actableai.causal.exposure.model.identify_estimand_models.IdentifyEstimandResult(*, estimate_possibility: bool, backdoor_variables: List[str], frontdoor_variables: List[str], instrumental_variables: List[str], causal_model: dowhy.causal_model.CausalModel)

Bases: pydantic.main.BaseModel

class Config

Bases: object

arbitrary_types_allowed = True
backdoor_variables: List[str]
causal_model: dowhy.causal_model.CausalModel
estimate_possibility: bool
frontdoor_variables: List[str]
instrumental_variables: List[str]
to_dict()

actableai.causal.exposure.model.refute_estimate_models module

class actableai.causal.exposure.model.refute_estimate_models.RefuterResult(*, estimate_id: str, refuter: str, result: int)

Bases: pydantic.main.BaseModel

estimate_id: str
refuter: str
result: int
to_dict()
class actableai.causal.exposure.model.refute_estimate_models.RefuterSpec(*, num_simulations: int, method_name: str, estimate: actableai.causal.exposure.model.estimate_effect_models.EstimateResult)

Bases: pydantic.main.BaseModel

estimate: actableai.causal.exposure.model.estimate_effect_models.EstimateResult
method_name: str
num_simulations: int

actableai.causal.exposure.model.shap_interpreter_models module

class actableai.causal.exposure.model.shap_interpreter_models.ListShapInterpreterResult(*, results: List[actableai.causal.exposure.model.shap_interpreter_models.ShapInterpreterResult])

Bases: pydantic.main.BaseModel

results: List[actableai.causal.exposure.model.shap_interpreter_models.ShapInterpreterResult]
to_dict()
class actableai.causal.exposure.model.shap_interpreter_models.ShapInterpreterResult(*, estimate_id: str, shap_population_name: int, shap_treatment: float, shap_outcome: int, shap_causal_model: float, shap_estimator: float)

Bases: pydantic.main.BaseModel

estimate_id: str
shap_causal_model: float
shap_estimator: float
shap_outcome: int
shap_population_name: int
shap_treatment: float
to_dict()
class actableai.causal.exposure.model.shap_interpreter_models.ShapInterpreterSpec(*, outcome_result: pandas.core.frame.DataFrame)

Bases: pydantic.main.BaseModel

class Config

Bases: object

arbitrary_types_allowed = True
outcome_result: pandas.core.frame.DataFrame

actableai.causal.exposure.model.significance_test_models module

class actableai.causal.exposure.model.significance_test_models.ComputeNullEffectSpec(*, estimate: dowhy.causal_estimator.CausalEstimate, identified_estimand: dowhy.causal_identifier.IdentifiedEstimand, causal_model: dowhy.causal_model.CausalModel, original_effect: float)

Bases: pydantic.main.BaseModel

class Config

Bases: object

arbitrary_types_allowed = True
causal_model: dowhy.causal_model.CausalModel
estimate: dowhy.causal_estimator.CausalEstimate
identified_estimand: dowhy.causal_identifier.IdentifiedEstimand
original_effect: float
class actableai.causal.exposure.model.significance_test_models.PropensityScoreSpec(*, estimate_id: str, identified_estimand: dowhy.causal_identifier.IdentifiedEstimand, causal_model: dowhy.causal_model.CausalModel, estimate: dowhy.causal_estimator.CausalEstimate)

Bases: pydantic.main.BaseModel

class Config

Bases: object

arbitrary_types_allowed = True
causal_model: dowhy.causal_model.CausalModel
estimate: dowhy.causal_estimator.CausalEstimate
estimate_id: str
identified_estimand: dowhy.causal_identifier.IdentifiedEstimand
class actableai.causal.exposure.model.significance_test_models.SignificanceTestResult(*, p_value: str, significance: bool)

Bases: pydantic.main.BaseModel

p_value: str
significance: bool
to_dict()

Module contents