actableai.data_imputation.data.data_frame.DataFrame(d: Union[str, pandas.core.frame.DataFrame])¶Bases: pandas.core.frame.DataFrame
auto_fix(errors: Optional[actableai.data_imputation.error_detector.cell_erros.CellErrors] = None, *detectors: actableai.data_imputation.error_detector.base_error_detector.BaseErrorDetector) actableai.data_imputation.data.data_frame.DataFrame¶column_types: actableai.data_imputation.type_recon.type_detector.DfTypes¶detect_error(*detectors: actableai.data_imputation.error_detector.base_error_detector.BaseErrorDetector) actableai.data_imputation.error_detector.cell_erros.CellErrors¶enable_debug(enable: bool = True)¶fix_info¶fix_strategy¶from_dict(data, orient='columns', dtype=None, columns=None) actableai.data_imputation.data.data_frame.DataFrame¶Construct DataFrame from dict of array-like or dicts.
Creates DataFrame object from dictionary by columns or by index allowing dtype specification.
orient='index'. Raises a ValueError
if used with orient='columns'.See also
DataFrame.from_recordsDataFrameExamples
By default the keys of the dict become the DataFrame columns:
>>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data)
col_1 col_2
0 3 a
1 2 b
2 1 c
3 0 d
Specify orient='index' to create the DataFrame using dictionary
keys as rows:
>>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data, orient='index')
0 1 2 3
row_1 3 2 1 0
row_2 a b c d
When using the ‘index’ orientation, the column names can be specified manually:
>>> pd.DataFrame.from_dict(data, orient='index',
... columns=['A', 'B', 'C', 'D'])
A B C D
row_1 3 2 1 0
row_2 a b c d
override_column_type(column: str, column_type: actableai.data_imputation.meta.types.ColumnType)¶possible_column_types: Dict[str, Set[actableai.data_imputation.meta.types.ColumnType]]¶actableai.data_imputation.data.loader.load_data(d: Union[str, pandas.core.frame.DataFrame]) pandas.core.frame.DataFrame¶actableai.data_imputation.data.DataFrame(d: Union[str, pandas.core.frame.DataFrame])¶Bases: pandas.core.frame.DataFrame
auto_fix(errors: Optional[actableai.data_imputation.error_detector.cell_erros.CellErrors] = None, *detectors: actableai.data_imputation.error_detector.base_error_detector.BaseErrorDetector) actableai.data_imputation.data.data_frame.DataFrame¶column_types: actableai.data_imputation.type_recon.type_detector.DfTypes¶detect_error(*detectors: actableai.data_imputation.error_detector.base_error_detector.BaseErrorDetector) actableai.data_imputation.error_detector.cell_erros.CellErrors¶enable_debug(enable: bool = True)¶fix_info¶fix_strategy¶from_dict(data, orient='columns', dtype=None, columns=None) actableai.data_imputation.data.data_frame.DataFrame¶Construct DataFrame from dict of array-like or dicts.
Creates DataFrame object from dictionary by columns or by index allowing dtype specification.
orient='index'. Raises a ValueError
if used with orient='columns'.See also
DataFrame.from_recordsDataFrameExamples
By default the keys of the dict become the DataFrame columns:
>>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data)
col_1 col_2
0 3 a
1 2 b
2 1 c
3 0 d
Specify orient='index' to create the DataFrame using dictionary
keys as rows:
>>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data, orient='index')
0 1 2 3
row_1 3 2 1 0
row_2 a b c d
When using the ‘index’ orientation, the column names can be specified manually:
>>> pd.DataFrame.from_dict(data, orient='index',
... columns=['A', 'B', 'C', 'D'])
A B C D
row_1 3 2 1 0
row_2 a b c d
override_column_type(column: str, column_type: actableai.data_imputation.meta.types.ColumnType)¶possible_column_types: Dict[str, Set[actableai.data_imputation.meta.types.ColumnType]]¶