actableai.models.autogluon.params.ag_automm.AGAUTOMMParams¶Bases: actableai.models.autogluon.params.base.BaseParams
Parameter class for AG_AUTOMM Model.
explain_samples_supported: bool = False¶gpu_required: bool = True¶supported_problem_types: Literal['regression', 'binary', 'multiclass', 'quantile'] = ['regression', 'binary', 'multiclass']¶actableai.models.autogluon.params.base.BaseParams¶Bases: abc.ABC
Base class for Regression Model Parameters.
explain_samples_supported: bool¶get_autogluon_name() Union[str, Type[AbstractModel]]¶get_autogluon_parameters(hyperparameters: Dict[str, Any], model_hyperparameters_space: actableai.parameters.parameters.Parameters, process_hyperparameters: bool = True) dict¶Converts hyperparameters for use in AutoGluon’s hyperparameter optimization search.
format.
parameters_autogluon
get_hyperparameters(*, problem_type: str, device: str, num_class: int) actableai.parameters.parameters.Parameters¶Returns the hyperparameters space of the model.
The hyperparameters space.
gpu_required: bool = False¶supported_problem_types: Literal['regression', 'binary', 'multiclass', 'quantile']¶actableai.models.autogluon.params.base.Model(value)¶Bases: str, enum.Enum
Enum representing the different models available.
ag_automm = 'ag_automm'¶cat = 'cat'¶fasttext = 'fasttext'¶gbm = 'gbm'¶knn = 'knn'¶lr = 'lr'¶nn_fastainn = 'nn_fastainn'¶nn_mxnet = 'nn_mxnet'¶nn_torch = 'nn_torch'¶polynomial_linear = 'polynomial_linear'¶rf = 'rf'¶tabpfn = 'tabpfn'¶xgb_linear = 'xgb_linear'¶xgb_tree = 'xgb_tree'¶xt = 'xt'¶actableai.models.autogluon.params.cat.CATParams¶Bases: actableai.models.autogluon.params.base.BaseParams
Parameter class for CAT Model.
explain_samples_supported: bool = True¶supported_problem_types: Literal['regression', 'binary', 'multiclass', 'quantile'] = ['regression', 'binary', 'multiclass']¶actableai.models.autogluon.params.fastainn.FastAINNParams¶Bases: actableai.models.autogluon.params.base.BaseParams
Parameter class for fastai Model.
explain_samples_supported: bool = False¶supported_problem_types: Literal['regression', 'binary', 'multiclass', 'quantile'] = ['regression', 'quantile', 'binary', 'multiclass']¶actableai.models.autogluon.params.fasttext.FASTTEXTParams¶Bases: actableai.models.autogluon.params.base.BaseParams
Parameter class for FASTTEXT Model.
explain_samples_supported: bool = False¶supported_problem_types: Literal['regression', 'binary', 'multiclass', 'quantile'] = ['binary', 'multiclass']¶actableai.models.autogluon.params.gbm.GBMParams¶Bases: actableai.models.autogluon.params.base.BaseParams
Parameter class for GBM Model.
explain_samples_supported: bool = True¶supported_problem_types: Literal['regression', 'binary', 'multiclass', 'quantile'] = ['regression', 'binary', 'multiclass']¶actableai.models.autogluon.params.knn.KNNParams¶Bases: actableai.models.autogluon.params.base.BaseParams
Parameter class for KNN Model.
explain_samples_supported: bool = False¶supported_problem_types: Literal['regression', 'binary', 'multiclass', 'quantile'] = ['regression', 'binary', 'multiclass']¶actableai.models.autogluon.params.lr.LRParams¶Bases: actableai.models.autogluon.params.base.BaseParams
Parameter class for LR Model.
explain_samples_supported: bool = False¶supported_problem_types: Literal['regression', 'binary', 'multiclass', 'quantile'] = ['regression', 'binary', 'multiclass']¶actableai.models.autogluon.params.nn_base.get_parameters() List[actableai.parameters.base.BaseParameter]¶Define parameters that are common for all variants of NN models (PyTorch and MXNet)
actableai.models.autogluon.params.nn_mxnet.NNMXNetParams¶Bases: actableai.models.autogluon.params.base.BaseParams
Parameter class for NN Model.
explain_samples_supported: bool = False¶supported_problem_types: Literal['regression', 'binary', 'multiclass', 'quantile'] = ['regression', 'binary', 'multiclass']¶actableai.models.autogluon.params.nn_torch.NNTorchParams¶Bases: actableai.models.autogluon.params.base.BaseParams
Parameter class for NN Model.
explain_samples_supported: bool = False¶supported_problem_types: Literal['regression', 'binary', 'multiclass', 'quantile'] = ['quantile']¶actableai.models.autogluon.params.polynomial_linear.PolynomialLinearPredParams¶Bases: actableai.models.autogluon.params.base.BaseParams
Parameter class for Polynomial Linear Predictor Model.
causal_inference_supported = True¶explain_samples_supported: bool = True¶get_autogluon_name() Union[str, Type[AbstractModel]]¶supported_problem_types: Literal['regression', 'binary', 'multiclass', 'quantile'] = ['regression']¶actableai.models.autogluon.params.rf.RFParams¶Bases: actableai.models.autogluon.params.base.BaseParams
Parameter class for RF Model.
explain_samples_supported: bool = True¶supported_problem_types: Literal['regression', 'binary', 'multiclass', 'quantile'] = ['regression', 'quantile', 'binary', 'multiclass']¶actableai.models.autogluon.params.tabpfn.TabPFNParams¶Bases: actableai.models.autogluon.params.base.BaseParams
Parameter class for TabPFN Model.
explain_samples_supported: bool = False¶get_autogluon_name() Union[str, Type[AbstractModel]]¶supported_problem_types: Literal['regression', 'binary', 'multiclass', 'quantile'] = ['binary', 'multiclass']¶actableai.models.autogluon.params.xgboost_base.get_parameters(problem_type: str, num_class: int) List[actableai.parameters.base.BaseParameter]¶Define parameters that are common for all variants of XGBoost boosters (tree and linear)
list containing the defined parameters
parameters
actableai.models.autogluon.params.xgboost_linear.XGBoostLinearParams¶Bases: actableai.models.autogluon.params.base.BaseParams
Parameter class for XGBoost Model when using a linear booster.
explain_samples_supported: bool = True¶supported_problem_types: Literal['regression', 'binary', 'multiclass', 'quantile'] = []¶actableai.models.autogluon.params.xgboost_tree.XGBoostTreeParams¶Bases: actableai.models.autogluon.params.base.BaseParams
Parameter class for XGBoost Model when using a tree booster.
explain_samples_supported: bool = True¶supported_problem_types: Literal['regression', 'binary', 'multiclass', 'quantile'] = ['regression', 'binary', 'multiclass']¶actableai.models.autogluon.params.xt.XTParams¶Bases: actableai.models.autogluon.params.base.BaseParams
Parameter class for XT Model.
explain_samples_supported: bool = True¶supported_problem_types: Literal['regression', 'binary', 'multiclass', 'quantile'] = ['regression', 'binary', 'multiclass']¶