actableai.models.legacy.inference.AAIModelInferenceHeadLegacy(cache_maxsize: int = 20)¶Bases: object
get_actor(cache_maxsize: int = 20)¶get_model_ref(s3_bucket_name, path)¶load_raw_model(s3_bucket_name, path)¶actableai.models.legacy.inference.AAIModelInferenceLegacy(s3_bucket, s3_prefix='', cache_maxsize=5, head_cache_maxsize=20)¶Bases: object
TODO write documentation
deploy(ray_autoscaling_configs, ray_options, s3_bucket, s3_prefix='', cache_maxsize=5, head_cache_maxsize=20)¶TODO write documentation
get_deployment()¶TODO write documentation
get_handle()¶TODO write documentation
get_metadata(task_id)¶get_model_path(s3_prefix, task_id)¶TODO write documentation
is_model_available(task_id)¶TODO write documentation
predict(task_id, df, return_probabilities=False, probability_threshold=0.5, positive_label=None)¶predict_proba(task_id, df)¶actableai.models.legacy.intervention.empty_string_to_nan(df: pandas.core.frame.DataFrame, task_model, intervention_col: str, new_intervention_col: str, expected_target: str) pandas.core.frame.DataFrame¶empty strings set to nan values and casted as float if treatment is not discrete.
pd.DataFrame