actableai.third_parties.spanABSA.absa package

Submodules

actableai.third_parties.spanABSA.absa.run_base module

actableai.third_parties.spanABSA.absa.run_base.bert_load_state_dict(model, state_dict)
actableai.third_parties.spanABSA.absa.run_base.copy_optimizer_params_to_model(named_params_model, named_params_optimizer)

Utility function for optimize_on_cpu and 16-bits training. Copy the parameters optimized on CPU/RAM back to the model on GPU

actableai.third_parties.spanABSA.absa.run_base.post_process_loss(args, n_gpu, loss)
actableai.third_parties.spanABSA.absa.run_base.prepare_optimizer(args, model, num_train_steps)
actableai.third_parties.spanABSA.absa.run_base.set_optimizer_params_grad(named_params_optimizer, named_params_model, test_nan=False)

Utility function for optimize_on_cpu and 16-bits training. Copy the gradient of the GPU parameters to the CPU/RAMM copy of the model

actableai.third_parties.spanABSA.absa.run_cls_span module

Run BERT on SemEval.

actableai.third_parties.spanABSA.absa.run_cls_span.eval_absa(all_examples, all_features, all_results, do_lower_case, verbose_logging, logger)
actableai.third_parties.spanABSA.absa.run_cls_span.evaluate(args, model, device, eval_examples, eval_features, eval_dataloader, logger, write_pred=False)
actableai.third_parties.spanABSA.absa.run_cls_span.main()
actableai.third_parties.spanABSA.absa.run_cls_span.metric_max_over_ground_truths(metric_fn, term, polarity, gold_terms, gold_polarities)
actableai.third_parties.spanABSA.absa.run_cls_span.pipeline_eval_data(args, tokenizer, logger)
actableai.third_parties.spanABSA.absa.run_cls_span.read_eval_data(args, tokenizer, logger)
actableai.third_parties.spanABSA.absa.run_cls_span.read_train_data(args, tokenizer, logger)
actableai.third_parties.spanABSA.absa.run_cls_span.run_train_epoch(args, global_step, model, param_optimizer, train_dataloader, eval_examples, eval_features, eval_dataloader, optimizer, n_gpu, device, logger, log_path, save_path, save_checkpoints_steps, start_save_steps, best_f1)

actableai.third_parties.spanABSA.absa.run_extract_span module

Run BERT on SemEval.

actableai.third_parties.spanABSA.absa.run_extract_span.eval_aspect_extract(all_examples, all_features, all_results, do_lower_case, verbose_logging, logger)
actableai.third_parties.spanABSA.absa.run_extract_span.evaluate(args, model, device, eval_examples, eval_features, eval_dataloader, logger, write_pred=False, do_pipeline=False)
actableai.third_parties.spanABSA.absa.run_extract_span.main()
actableai.third_parties.spanABSA.absa.run_extract_span.read_eval_data(args, tokenizer, logger)
actableai.third_parties.spanABSA.absa.run_extract_span.read_train_data(args, tokenizer, logger)
actableai.third_parties.spanABSA.absa.run_extract_span.run_train_epoch(args, global_step, model, param_optimizer, train_dataloader, eval_examples, eval_features, eval_dataloader, optimizer, n_gpu, device, logger, log_path, save_path, save_checkpoints_steps, start_save_steps, best_f1)

actableai.third_parties.spanABSA.absa.run_joint_span module

Run BERT on SemEval.

actableai.third_parties.spanABSA.absa.run_joint_span.evaluate(args, model, device, eval_examples, eval_features, eval_dataloader, logger, write_pred=False)
actableai.third_parties.spanABSA.absa.run_joint_span.main()
actableai.third_parties.spanABSA.absa.run_joint_span.read_eval_data(args, tokenizer, logger)
actableai.third_parties.spanABSA.absa.run_joint_span.read_train_data(args, tokenizer, logger)
actableai.third_parties.spanABSA.absa.run_joint_span.run_train_epoch(args, global_step, model, param_optimizer, train_examples, train_features, train_dataloader, eval_examples, eval_features, eval_dataloader, optimizer, n_gpu, device, logger, log_path, save_path, save_checkpoints_steps, start_save_steps, best_f1)

actableai.third_parties.spanABSA.absa.utils module

class actableai.third_parties.spanABSA.absa.utils.InputFeatures(unique_id, example_index, tokens, token_to_orig_map, input_ids, input_mask, segment_ids, start_positions=None, end_positions=None, start_indexes=None, end_indexes=None, bio_labels=None, polarity_positions=None, polarity_labels=None, label_masks=None)

Bases: object

A single set of features of data.

class actableai.third_parties.spanABSA.absa.utils.RawBIOClsResult(unique_id, start_indexes, end_indexes, bio_pred, span_masks)

Bases: tuple

bio_pred

Alias for field number 3

end_indexes

Alias for field number 2

span_masks

Alias for field number 4

start_indexes

Alias for field number 1

unique_id

Alias for field number 0

class actableai.third_parties.spanABSA.absa.utils.RawBIOResult(unique_id, bio_pred)

Bases: tuple

bio_pred

Alias for field number 1

unique_id

Alias for field number 0

class actableai.third_parties.spanABSA.absa.utils.RawFinalResult(unique_id, start_indexes, end_indexes, cls_pred, span_masks)

Bases: tuple

cls_pred

Alias for field number 3

end_indexes

Alias for field number 2

span_masks

Alias for field number 4

start_indexes

Alias for field number 1

unique_id

Alias for field number 0

class actableai.third_parties.spanABSA.absa.utils.RawSpanCollapsedResult(unique_id, neu_start_logits, neu_end_logits, pos_start_logits, pos_end_logits, neg_start_logits, neg_end_logits)

Bases: tuple

neg_end_logits

Alias for field number 6

neg_start_logits

Alias for field number 5

neu_end_logits

Alias for field number 2

neu_start_logits

Alias for field number 1

pos_end_logits

Alias for field number 4

pos_start_logits

Alias for field number 3

unique_id

Alias for field number 0

class actableai.third_parties.spanABSA.absa.utils.RawSpanResult(unique_id, start_logits, end_logits)

Bases: tuple

end_logits

Alias for field number 2

start_logits

Alias for field number 1

unique_id

Alias for field number 0

class actableai.third_parties.spanABSA.absa.utils.SemEvalExample(example_id, sent_tokens, term_texts=None, start_positions=None, end_positions=None, polarities=None)

Bases: object

actableai.third_parties.spanABSA.absa.utils.convert_absa_data(dataset, verbose_logging=False)
actableai.third_parties.spanABSA.absa.utils.convert_examples_to_features(examples, tokenizer, max_seq_length, verbose_logging=False, logger=None)
actableai.third_parties.spanABSA.absa.utils.pos2term(words, starts, ends)
actableai.third_parties.spanABSA.absa.utils.read_absa_data(path)

read data from the specified path :param path: path of dataset :return:

actableai.third_parties.spanABSA.absa.utils.span_annotate_candidates(all_examples, batch_features, batch_results, filter_type, is_training, use_heuristics, use_nms, logit_threshold, n_best_size, max_answer_length, do_lower_case, verbose_logging, logger)

Annotate top-k candidate answers into features.

actableai.third_parties.spanABSA.absa.utils.ts2polarity(words, ts_tag_sequence, starts, ends)
actableai.third_parties.spanABSA.absa.utils.ts2start_end(ts_tag_sequence)
actableai.third_parties.spanABSA.absa.utils.wrapped_get_final_text(example, feature, start_index, end_index, do_lower_case, verbose_logging, logger)

Module contents