actableai.utils.preprocessors.autogluon_preproc.CustomeDateTimeFeatureGenerator(features: list = ['year', 'month', 'day', 'dayofweek'], **kwargs)¶Bases: autogluon.features.generators.datetime.DatetimeFeatureGenerator
actableai.utils.preprocessors.preprocessing.CopyTransformer¶Bases: sklearn.base.TransformerMixin, sklearn.base.BaseEstimator
fit(X)¶transform(X, y=None)¶actableai.utils.preprocessors.preprocessing.MultiCountVectorizer(ngram_range=(1, 2), max_features=1000)¶Bases: sklearn.base.TransformerMixin, sklearn.base.BaseEstimator
Repeated Count Vectorizer on multiple columns
fit(X, y=None, **fit_params)¶fit_transform(X, y=None, **fit_params)¶Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
X_new – Transformed array.
ndarray array of shape (n_samples, n_features_new)
get_feature_names_out(input_features=None)¶transform(X, y=None)¶actableai.utils.preprocessors.preprocessing.PercentageTransformer¶Bases: sklearn.base._OneToOneFeatureMixin, sklearn.base.BaseEstimator, sklearn.base.TransformerMixin
Percentage Transformer that transforms strings with percentages into floats
fit_transform(X, y=None, **fit_params)¶Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
X_new – Transformed array.
ndarray array of shape (n_samples, n_features_new)
selector(df)¶transform(X, y=None)¶actableai.utils.preprocessors.preprocessing.SKLearnAGFeatureWrapperBase(ag_feature_generator)¶Bases: sklearn.base.TransformerMixin, sklearn.base.BaseEstimator
SKLearn Transformer Wrapper around AutoGluonFeature Generator
fit(X, **kwargs)¶fit_transform(X, y=None, **fit_params)¶Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
X_new – Transformed array.
ndarray array of shape (n_samples, n_features_new)
get_feature_names_out(input_features=None)¶transform(X, y=None)¶actableai.utils.preprocessors.preprocessing.impute_df(df, numeric_imputer=None, categorical_imputer=None)¶