actableai.utils.tests.test__init__.test_get_type_special_no_ag()¶actableai.utils.tests.test__init__.test_is_fitted()¶actableai.utils.tests.test__init__.test_is_fitted_2()¶actableai.utils.tests.test_categorical_numerical_convert.test_categorical_to_num()¶Check if conversion of categorical features to enumerated, and conversion back to numerical yields the same dataframe as the original.
actableai.utils.tests.test_dataset_generator.TestGenerateDataset¶Bases: object
test_generate_and_save_simple_dataset(tmp_path)¶test_generate_simple_dataset()¶actableai.utils.tests.test_dataset_generator.TestGenerateDatasetParameters¶Bases: object
pytestmark = [Mark(name='parametrize', args=('save_parameters', [True, False]), kwargs={}), Mark(name='parametrize', args=('save_output', [True, False]), kwargs={})]¶test_columns(tmp_path, save_output, save_parameters, columns, column_type)¶test_columns_mixed_type(tmp_path, save_output, save_parameters, columns, random_state)¶test_date_column_default(tmp_path, save_output, save_parameters)¶test_date_column_end(tmp_path, save_output, save_parameters)¶test_date_column_end_freq(tmp_path, save_output, save_parameters)¶test_date_column_freq(tmp_path, save_output, save_parameters, freq)¶test_date_column_start(tmp_path, save_output, save_parameters)¶test_date_column_start_end(tmp_path, save_output, save_parameters)¶test_date_column_start_end_freq(tmp_path, save_output, save_parameters)¶test_date_column_start_freq(tmp_path, save_output, save_parameters)¶test_name_one_column(tmp_path, save_output, save_parameters, column_type)¶test_name_three_columns(tmp_path, save_output, save_parameters)¶test_no_name_one_column(tmp_path, save_output, save_parameters, column_type)¶test_no_name_three_columns(tmp_path, save_output, save_parameters)¶test_no_type(tmp_path, save_output, save_parameters)¶test_number_column_default(tmp_path, save_output, save_parameters)¶test_number_column_default_float(tmp_path, save_output, save_parameters)¶test_number_column_default_range(tmp_path, save_output, save_parameters)¶test_number_column_float(tmp_path, save_output, save_parameters)¶test_number_column_float_range(tmp_path, save_output, save_parameters, range_min, range_max)¶test_number_column_int(tmp_path, save_output, save_parameters)¶test_number_column_int_range(tmp_path, save_output, save_parameters, range_min, range_max)¶test_one_value(tmp_path, save_output, save_parameters)¶test_random_state_one_column(tmp_path, save_output, save_parameters, random_state, column_type)¶test_random_state_three_columns(tmp_path, save_output, save_parameters, random_state)¶test_rows(tmp_path, save_output, save_parameters, rows)¶test_text_column_categories(tmp_path, save_output, save_parameters, n_categories)¶test_text_column_default(tmp_path, save_output, save_parameters)¶test_text_column_default_categories(tmp_path, save_output, save_parameters)¶test_text_column_default_range(tmp_path, save_output, save_parameters)¶test_text_column_default_word_range(tmp_path, save_output, save_parameters)¶test_text_column_range(tmp_path, save_output, save_parameters, range_min, range_max)¶test_text_column_word_range(tmp_path, save_output, save_parameters, range_min, range_max)¶test_three_values(tmp_path, save_output, save_parameters)¶actableai.utils.tests.test_dataset_generator.call_dataset_generator(tmp_path: pathlib.Path, columns_parameters: List[dict], rows: int, save_output: bool, save_parameters: bool, random_state: Optional[int] = None) pandas.core.frame.DataFrame¶Call dataset generator
Either the generated dataframe directly, or the read dataframe from the generated csv file
actableai.utils.tests.test_pdp_ice.classification_task()¶actableai.utils.tests.test_pdp_ice.regression_task()¶actableai.utils.tests.test_pdp_ice.test_pdp_ice_classification(classification_task, tmp_path)¶Check if PDP and ICE for classification tasks runs without errors, and that the outputs are of the expected dimensions
actableai.utils.tests.test_pdp_ice.test_pdp_ice_classification_null(classification_task, tmp_path)¶Check if PDP and ICE for classification tasks runs without errors, and that the outputs are of the expected dimensions
In this case, each row contains at least one column with a null value; ensure that PDP/ICE can still be computed
This also tests for handling of null values in numerical and categorical columns
actableai.utils.tests.test_pdp_ice.test_pdp_ice_regression(regression_task, tmp_path)¶Check if PDP and ICE for regression tasks runs without errors, and that the outputs are of the expected dimensions
actableai.utils.tests.test_pdp_ice.test_pdp_ice_regression_null(regression_task, tmp_path)¶Check if PDP and ICE for regression tasks runs without errors, and that the outputs are of the expected dimensions
In this case, each row contains at least one column with a null value; ensure that PDP/ICE can still be computed
This also tests for handling of null values in numerical and categorical columns