actableai.causal.exposure.inference.causal_graph.create_gml_model_specs(treatment_specs: List[actableai.causal.exposure.model.estimate_effect_models.TreatmentSpec], outcome_specs: List[actableai.causal.exposure.model.estimate_effect_models.OutcomeSpec], model_specs: List[actableai.causal.exposure.model.estimate_effect_models.ModelSpec]) List[actableai.causal.exposure.model.estimate_effect_models.CausalGraphModelSpec]¶Generate gml causal graphs for all model types in the model specs (e.g. maximum, intermediate, minimum, and unadjusted models)
actableai.causal.exposure.inference.estimator.CausalEstimator(classifier=None, regressor=None, parallelism=False)¶Bases: object
Create estimator configurations for a given estimator method using a format expected by DoWhy
config_default(estimator_spec: Dict) Dict¶Default setting with no configurations
config_double_machine_learning(estimator_spec: Dict) Dict¶Config parameters for Linear/Forest Double Machine Learning
config_doubly_robust(estimator_spec: Dict) Dict¶Config parameters for Linear/Forest Doubly Robust Learner
config_estimator(estimator_spec: Dict) Dict¶config_forest_double_machine_learning(estimator_spec: Dict) Dict¶config_forest_doubly_robust(estimator_spec: Dict) Dict¶config_propensity_matching(estimator_spec: Dict) Dict¶Config parameters for Propensity Score Matching
config_propensity_stratification(estimator_spec: Dict) Dict¶Config parameters for Propensity Score Stratification Number of strata is auto-selected within DoWhy
config_propensity_weighting(estimator_spec: Dict) Dict¶Config parameters for Inverse Propensity Weighting
tune_classifier_model(identified_estimand, causal_model)¶Tune hyperparameters for propensity model
tune_dml_regressor_model(identified_estimand, causal_model)¶Tune hyperparameters for first stage regressor model for Double ML model
tune_dr_regressor_model(identified_estimand, causal_model)¶Tune hyperparameters for first stage regressor model for doubly robust learner
actableai.causal.exposure.inference.identify_estimand.identify_estimand(causal_graph, dataframe, treatment, outcome, controls)¶actableai.causal.exposure.inference.refutation.add_unobserved_common_cause(model: dowhy.causal_model.CausalModel, identified_estimand: dowhy.causal_identifier.IdentifiedEstimand, estimate: dowhy.causal_estimator.CausalEstimate, num_simulations: int = 100, **kwargs) int¶Simulate a common cause that is correlated with the treatment and outcome. The test fails if the new estimate changes sign
compared to the original estimate
actableai.causal.exposure.inference.refutation.bootstrap_refuter(model: dowhy.causal_model.CausalModel, identified_estimand: dowhy.causal_identifier.IdentifiedEstimand, estimate: dowhy.causal_estimator.CausalEstimate, num_simulations: int = 100, **kwargs) int¶Replace the given dataset with a bootstrapped sample of the dataset. Use p-value as pass/fail criterion.
actableai.causal.exposure.inference.refutation.check_p_value(p_value: float, p_threshold: float = 0.05) int¶Helper function to check if the returned p_value passes the given threshold
actableai.causal.exposure.inference.refutation.check_sign_change(new_effect, original_estimate) int¶compared to the original effect
actableai.causal.exposure.inference.refutation.data_subset_refuter(model: dowhy.causal_model.CausalModel, identified_estimand: dowhy.causal_identifier.IdentifiedEstimand, estimate: dowhy.causal_estimator.CausalEstimate, num_simulations: int = 100, **kwargs) int¶Replace the given subset with a randomly selected subset. Use p-value as pass/fail criterion.
actableai.causal.exposure.inference.refutation.get_tasks(num_simulations_map, estimate_effects_results, refuters)¶actableai.causal.exposure.inference.refutation.placebo_treatment_refuter(model: dowhy.causal_model.CausalModel, identified_estimand: dowhy.causal_identifier.IdentifiedEstimand, estimate: dowhy.causal_estimator.CausalEstimate, num_simulations: int = 100, **kwargs) int¶Replace treatment with a random independent variable. Use p-value as pass/fail criterion.
actableai.causal.exposure.inference.refutation.random_common_cause(model: dowhy.causal_model.CausalModel, identified_estimand: dowhy.causal_identifier.IdentifiedEstimand, estimate: dowhy.causal_estimator.CausalEstimate, num_simulations: int = 100, **kwargs) int¶Add white noise variable as a random common cause. Use p-value as pass/fail criterion.
actableai.causal.exposure.inference.refutation.refute_estimate(spec: actableai.causal.exposure.model.refute_estimate_models.RefuterSpec)¶actableai.causal.exposure.inference.significance_test.compute_null_effect(specifications)¶actableai.causal.exposure.inference.significance_test.get_propensity_scores(identified_estimand, causal_model, estimate)¶actableai.causal.exposure.inference.specification_interpreter.get_tasks(estimate_effect_results)¶actableai.causal.exposure.inference.specification_interpreter.interpret(spec_results: pandas.core.frame.DataFrame, spec_features: List, estimated_effect_col: str = 'estimated_effect') pandas.core.frame.DataFrame¶