actableai.classification.cross_validation.AverageEnsembleClassifier(predictors)¶Bases: object
predict(X) pandas.core.series.Series¶Predicts the class for each sample in X. :param X: DataFrame with features.
predict_proba(X, *args, **kwargs)¶Predict probabilities for each predictor for each class for each sample.
unpersist_models()¶Unpersists all models in the ensemble.
actableai.classification.cross_validation.run_cross_validation(classification_train_task: actableai.tasks.classification._AAIClassificationTrainTask, problem_type: str, explain_samples: bool, positive_label: Optional[str], presets: str, hyperparameters: dict, model_directory: str, target: str, features: list, run_model: bool, df_train: pandas.core.frame.DataFrame, df_test: pandas.core.frame.DataFrame, kfolds: int, cross_validation_max_concurrency: int, drop_duplicates: bool, run_debiasing: bool, biased_groups: list, debiased_features: list, residuals_hyperparameters: Optional[dict], num_gpus: int, eval_metric: str, time_limit: Optional[int], drop_unique: bool, drop_useless_features: bool, feature_prune: bool, feature_prune_time_limit: Optional[float], tabpfn_model_directory: Optional[str], num_trials: int, infer_limit: float, infer_limit_batch_size: int) Tuple[actableai.classification.cross_validation.AverageEnsembleClassifier, list, dict, List[pandas.core.frame.DataFrame], pandas.core.frame.DataFrame, pandas.core.frame.DataFrame, pandas.core.frame.DataFrame]¶Runs a cross validation for a classification task.
Tuple
actableai.classification.model.ClassificationInference(model: actableai.models.inference.ModelType)¶Bases: actableai.models.autogluon.base.AAIAutogluonTabularInference[actableai.classification.model.ClassificationModel, actableai.classification.model.ClassificationMetadata]
actableai.classification.model.ClassificationMetadata(*, features: List[str], feature_parameters: Dict[str, Any], problem_type: Literal['binary', 'multiclass'], prediction_target: str, is_explainer_available: bool, intervened_column: Optional[str] = None, discrete_treatment: Optional[str] = None, class_labels: List[str])¶Bases: actableai.models.autogluon.base.AAIAutogluonTabularMetadata
class_labels: List[str]¶problem_type: Literal['binary', 'multiclass']¶actableai.classification.model.ClassificationModel(autogluon_model, df_training: pandas.core.frame.DataFrame, explanation_model=None, intervention_model=None)¶Bases: actableai.models.autogluon.base.AAIAutogluonTabularModel
predict_from_proba(df_proba: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame¶set_positive_label_index(positive_label_index: int) None¶set_probability_threshold(probability_threshold: float) None¶actableai.classification.roc_curve_cross_validation.cross_validation_curve(cross_val_auc_curves: Dict, x: str = 'False Positive Rate', y: str = 'True Positive Rate', negative_label: bool = True) Dict¶actableai.classification.utils.leaderboard_cross_val(cross_val_leaderboard: List[pandas.core.frame.DataFrame]) pandas.core.frame.DataFrame¶Creates a leaderboard from a list of cross validation results.
actableai.classification.utils.split_validation_by_datetime(df_train: pandas.core.frame.DataFrame, datetime_column: str, validation_ratio: float = 0.2) Tuple[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame]¶