actableai.models.autogluon package

Submodules

actableai.models.autogluon.base module

class actableai.models.autogluon.base.AAIAutogluonTabularInference(model: actableai.models.inference.ModelType)

Bases: actableai.models.inference.AAIBaseModelInference[actableai.models.autogluon.base.AutogluonModelType, actableai.models.autogluon.base.AutogluonMetadataType], Generic[actableai.models.autogluon.base.AutogluonModelType, actableai.models.autogluon.base.AutogluonMetadataType], abc.ABC

class actableai.models.autogluon.base.AAIAutogluonTabularMetadata(*, features: List[str], feature_parameters: Dict[str, Any], problem_type: Literal['regression', 'quantile', 'binary', 'multiclass'], prediction_target: str, is_explainer_available: bool, intervened_column: Optional[str] = None, discrete_treatment: Optional[str] = None)

Bases: actableai.models.inference.AAIBaseModelMetadata, abc.ABC

discrete_treatment: Optional[str]
feature_parameters: Dict[str, Any]
features: List[str]
intervened_column: Optional[str]
is_explainer_available: bool
prediction_target: str
problem_type: Literal['regression', 'quantile', 'binary', 'multiclass']
class actableai.models.autogluon.base.AAIAutogluonTabularModel(autogluon_model: TabularPredictor, df_training: pd.DataFrame, has_predict_proba: bool, explanation_model=None, intervention_model=None)

Bases: actableai.models.base.AAIBaseModel[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame], abc.ABC

can_run_intervention(data: pandas.core.frame.DataFrame) bool
has_fit: bool = False
has_predict: bool = True
run_intervention(data: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame
run_intervention_prediction(data: pandas.core.frame.DataFrame, predictions: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame

actableai.models.autogluon.polynomial_linear module

Module contents