actableai.models.autogluon.base.AAIAutogluonTabularInference(model: actableai.models.inference.ModelType)¶Bases: actableai.models.inference.AAIBaseModelInference[actableai.models.autogluon.base.AutogluonModelType, actableai.models.autogluon.base.AutogluonMetadataType], Generic[actableai.models.autogluon.base.AutogluonModelType, actableai.models.autogluon.base.AutogluonMetadataType], abc.ABC
actableai.models.autogluon.base.AAIAutogluonTabularMetadata(*, features: List[str], feature_parameters: Dict[str, Any], problem_type: Literal['regression', 'quantile', 'binary', 'multiclass'], prediction_target: str, is_explainer_available: bool, intervened_column: Optional[str] = None, discrete_treatment: Optional[str] = None)¶Bases: actableai.models.inference.AAIBaseModelMetadata, abc.ABC
discrete_treatment: Optional[str]¶feature_parameters: Dict[str, Any]¶features: List[str]¶intervened_column: Optional[str]¶is_explainer_available: bool¶prediction_target: str¶problem_type: Literal['regression', 'quantile', 'binary', 'multiclass']¶actableai.models.autogluon.base.AAIAutogluonTabularModel(autogluon_model: TabularPredictor, df_training: pd.DataFrame, has_predict_proba: bool, explanation_model=None, intervention_model=None)¶Bases: actableai.models.base.AAIBaseModel[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame], abc.ABC
can_run_intervention(data: pandas.core.frame.DataFrame) bool¶has_fit: bool = False¶has_predict: bool = True¶run_intervention(data: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame¶run_intervention_prediction(data: pandas.core.frame.DataFrame, predictions: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame¶