actableai.data_imputation.data_imputation.data_imputation(df, rules='', impute_nulls=True)¶actableai.data_imputation.ColumnType(value)¶Bases: enum.Enum
An enumeration.
Category = 'category'¶Complex = 'complex'¶Float = 'float'¶Id = 'id'¶Integer = 'integer'¶NULL = 'null'¶NumWithTag = 'num_with_tag'¶Percentage = 'percentage'¶String = 'string'¶Temperature = 'temperature'¶Text = 'text'¶Timestamp = 'timestamp'¶Unknown = 'unknown'¶actableai.data_imputation.DataFrame(d: Union[str, pandas.core.frame.DataFrame])¶Bases: pandas.core.frame.DataFrame
auto_fix(errors: Optional[actableai.data_imputation.error_detector.cell_erros.CellErrors] = None, *detectors: actableai.data_imputation.error_detector.base_error_detector.BaseErrorDetector) actableai.data_imputation.data.data_frame.DataFrame¶column_types: actableai.data_imputation.type_recon.type_detector.DfTypes¶detect_error(*detectors: actableai.data_imputation.error_detector.base_error_detector.BaseErrorDetector) actableai.data_imputation.error_detector.cell_erros.CellErrors¶enable_debug(enable: bool = True)¶fix_info¶fix_strategy¶from_dict(data, orient='columns', dtype=None, columns=None) actableai.data_imputation.data.data_frame.DataFrame¶Construct DataFrame from dict of array-like or dicts.
Creates DataFrame object from dictionary by columns or by index allowing dtype specification.
orient='index'. Raises a ValueError
if used with orient='columns'.See also
DataFrame.from_recordsDataFrameExamples
By default the keys of the dict become the DataFrame columns:
>>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data)
col_1 col_2
0 3 a
1 2 b
2 1 c
3 0 d
Specify orient='index' to create the DataFrame using dictionary
keys as rows:
>>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']}
>>> pd.DataFrame.from_dict(data, orient='index')
0 1 2 3
row_1 3 2 1 0
row_2 a b c d
When using the ‘index’ orientation, the column names can be specified manually:
>>> pd.DataFrame.from_dict(data, orient='index',
... columns=['A', 'B', 'C', 'D'])
A B C D
row_1 3 2 1 0
row_2 a b c d
override_column_type(column: str, column_type: actableai.data_imputation.meta.types.ColumnType)¶possible_column_types: Dict[str, Set[actableai.data_imputation.meta.types.ColumnType]]¶actableai.data_imputation.MisplacedDetector(*, preset_rules: typing.List[actableai.data_imputation.error_detector.column_format.PresetRuleName] = (), customize_rules: actableai.data_imputation.error_detector.column_format.MatchRules = <actableai.data_imputation.error_detector.column_format.MatchRules object>)¶Bases: actableai.data_imputation.error_detector.base_error_detector.BaseErrorDetector
mentioned_columns: Set[str]¶setup(df: pandas.core.frame.DataFrame, dftypes: actableai.data_imputation.type_recon.type_detector.DfTypes)¶update_df(df: pandas.core.frame.DataFrame)¶actableai.data_imputation.NullDetector¶Bases: actableai.data_imputation.error_detector.base_error_detector.BaseErrorDetector
actableai.data_imputation.ValidationDetector(constraints: Optional[actableai.data_imputation.error_detector.constraint.Constraints] = NotImplemented)¶Bases: actableai.data_imputation.error_detector.base_error_detector.BaseErrorDetector
constraints¶from_constraints(constraints_string: str)¶setup_constraints(constraints: actableai.data_imputation.error_detector.constraint.Constraints)¶