actableai.embedding.models.base.BaseEmbeddingModel(embedding_size: int = 2, parameters: Optional[Dict[str, Any]] = None, process_parameters: bool = True, verbosity: int = 1)¶Bases: actableai.models.base.AAIParametersModel[numpy.ndarray, numpy.ndarray], abc.ABC
has_fit: bool = True¶has_transform: bool = True¶actableai.embedding.models.base.EmbeddingModelWrapper(embedding_size: int = 2, parameters: Optional[Dict[str, Any]] = None, process_parameters: bool = True, verbosity: int = 1)¶Bases: actableai.embedding.models.base.BaseEmbeddingModel, abc.ABC
initialize_model()¶actableai.embedding.models.linear_discriminant_analysis.LinearDiscriminantAnalysis(embedding_size: int = 2, parameters: Optional[Dict[str, Any]] = None, process_parameters: bool = True, verbosity: int = 1)¶Bases: actableai.embedding.models.base.EmbeddingModelWrapper
Class to handle LDA.
get_parameters() actableai.parameters.parameters.Parameters¶Returns the parameters of the model.
actableai.embedding.models.tsne.TSNE(embedding_size: int = 2, parameters: Optional[Dict[str, Any]] = None, process_parameters: bool = True, verbosity: int = 1)¶Bases: actableai.embedding.models.base.EmbeddingModelWrapper
Class to handle TSNE.
get_parameters() actableai.parameters.parameters.Parameters¶Returns the parameters of the model.
actableai.embedding.models.umap.UMAP(embedding_size: int = 2, parameters: Optional[Dict[str, Any]] = None, process_parameters: bool = True, verbosity: int = 1)¶Bases: actableai.embedding.models.base.EmbeddingModelWrapper
Class to handle UMAP.
get_parameters() actableai.parameters.parameters.Parameters¶Returns the parameters of the model.