actableai.models package

Subpackages

Submodules

actableai.models.aai_predictor module

class actableai.models.aai_predictor.AAIInterventionalModel(intervention_predictor)

Bases: actableai.models.aai_predictor.AAIModel

class actableai.models.aai_predictor.AAIModel

Bases: object

model_version = 4
class actableai.models.aai_predictor.AAITabularModel(predictor, df_training, explainer=None)

Bases: actableai.models.aai_predictor.AAIModel

class actableai.models.aai_predictor.AAITabularModelInterventional(predictor, intervention_model, df_training)

Bases: actableai.models.aai_predictor.AAITabularModel

actableai.models.base module

class actableai.models.base.AAIBaseModel

Bases: Generic[actableai.models.base.InputDataType, actableai.models.base.OutputDataType], abc.ABC

explain(data: actableai.models.base.InputDataType) actableai.models.base.OutputDataType
fit(data: actableai.models.base.InputDataType, target: Optional[actableai.models.base.OutputDataType] = None, **fit_params) AAIBaseModel
fit_predict(data: actableai.models.base.InputDataType, target: Optional[actableai.models.base.OutputDataType] = None) actableai.models.base.OutputDataType
fit_transform(data: actableai.models.base.InputDataType, target: Optional[actableai.models.base.OutputDataType] = None) actableai.models.base.OutputDataType
has_explanations: bool = False
has_fit: bool = False
has_predict: bool = False
has_predict_proba: bool = False
has_transform: bool = False
predict(data: actableai.models.base.InputDataType) actableai.models.base.OutputDataType
predict_proba(data: actableai.models.base.InputDataType) actableai.models.base.OutputDataType
transform(data: actableai.models.base.InputDataType) actableai.models.base.OutputDataType
version = 1
class actableai.models.base.AAIParametersModel(parameters: Optional[Dict[str, Any]] = None, process_parameters: bool = True)

Bases: actableai.models.base.AAIBaseModel[actableai.models.base.InputDataType, actableai.models.base.OutputDataType], Generic[actableai.models.base.InputDataType, actableai.models.base.OutputDataType], abc.ABC

abstract static get_parameters() actableai.parameters.parameters.Parameters

Returns the parameters of the model.

Returns
The parameters.

actableai.models.inference module

class actableai.models.inference.AAIBaseModelInference(model: actableai.models.inference.ModelType)

Bases: Generic[actableai.models.inference.ModelType, actableai.models.inference.MetadataType], abc.ABC

classmethod get_inference_class(model_name: str) Type[actableai.models.inference.AAIBaseModelInference]
get_parameters_definition() actableai.parameters.parameters.Parameters
infer(data: pandas.core.frame.DataFrame, options: Dict[str, Any]) Dict[str, Any]
class actableai.models.inference.AAIBaseModelMetadata

Bases: pydantic.main.BaseModel, abc.ABC

classmethod from_model(model: actableai.models.base.AAIBaseModel) actableai.models.inference.AAIBaseModelMetadata

Module contents

actableai.models.feature2param(feature_name, feature_type, df_training)

Convert feature to parameter