actableai.models.causal_inference_estimators.base.DMLModel(value)¶Bases: str, enum.Enum
Enum representing the different DML models available.
CausalForestDML = 'CausalForestDML'¶KernelDML = 'KernelDML'¶LinearDML = 'LinearDML'¶SparseLinearDML = 'SparseLinearDML'¶actableai.models.causal_inference_estimators.base.DistanceMatchingModel(value)¶Bases: str, enum.Enum
Enum representing the different Distance Matching models available.
DistanceMatching = 'DistanceMatching'¶actableai.models.causal_inference_estimators.base.EstimatorBaseParams(parameters: Optional[Dict[str, Any]] = None, process_parameters: bool = True, discrete_treatment: bool = False, random_state: Optional[int] = None)¶Bases: actableai.models.base.AAIParametersModel
Base class for Estimator Model Parameters.
estimate_effect(treatments: List, causal_model: CausalModel, target_units: str = 'ate', controls: Optional[List] = None, non_controls: Optional[List] = None)¶Estimate the causal effect.
estimator_type = None¶get_parameters() actableai.parameters.parameters.Parameters¶Returns the parameters of the model.
has_explanations: bool = False¶has_fit: bool = True¶has_predict: bool = False¶has_transform: bool = False¶initialize_model(model_y: Union[str, Type[TabularPredictor]], model_t: Union[str, Type[TabularPredictor]])¶method_name = None¶actableai.models.causal_inference_estimators.base.Model(value)¶Bases: str, enum.Enum
Enum representing the different models available.
CausalForestDML = 'CausalForestDML'¶DistanceMatching = 'DistanceMatching'¶KernelDML = 'KernelDML'¶LinearDML = 'LinearDML'¶PropensityScoreWeighting = 'PropensityScoreWeighting'¶SparseLinearDML = 'SparseLinearDML'¶actableai.models.causal_inference_estimators.causal_forest_dml.CausalForestDMLParams(parameters: Optional[Dict[str, Any]] = None, process_parameters: bool = True, discrete_treatment: bool = False, random_state: Optional[int] = None)¶Bases: actableai.models.causal_inference_estimators.base.EstimatorBaseParams
Parameter class for Causal Forest DML Model.
estimator_type = 'dml'¶get_parameters(cv, mc_iters, **kwargs) actableai.parameters.parameters.Parameters¶Returns the parameters space of the model.
The parameters space.
actableai.models.causal_inference_estimators.distance_matching.DistanceMatchingParams(parameters: Optional[Dict[str, Any]] = None, process_parameters: bool = True, discrete_treatment: bool = False, random_state: Optional[int] = None)¶Bases: actableai.models.causal_inference_estimators.base.EstimatorBaseParams
Parameter class for Distance Matching estimator.
estimator_type = 'matching'¶get_parameters(**kwargs) actableai.parameters.parameters.Parameters¶Returns the parameters space of the model.
method_name = 'backdoor.distance_matching'¶actableai.models.causal_inference_estimators.kernel_dml.KernelDMLParams(parameters: Optional[Dict[str, Any]] = None, process_parameters: bool = True, discrete_treatment: bool = False, random_state: Optional[int] = None)¶Bases: actableai.models.causal_inference_estimators.base.EstimatorBaseParams
Parameter class for Kernel DML Model.
estimator_type = 'dml'¶get_parameters(cv, mc_iters, **kwargs) actableai.parameters.parameters.Parameters¶Returns the parameters space of the model.
The parameters space.
actableai.models.causal_inference_estimators.linear_dml.LinearDMLParams(parameters: Optional[Dict[str, Any]] = None, process_parameters: bool = True, discrete_treatment: bool = False, random_state: Optional[int] = None)¶Bases: actableai.models.causal_inference_estimators.base.EstimatorBaseParams
Parameter class for Linear DML Model.
estimator_type = 'dml'¶get_parameters(cv, mc_iters, **kwargs) actableai.parameters.parameters.Parameters¶Returns the parameters space of the model.
The parameters space.
actableai.models.causal_inference_estimators.propensity_score_weighting.PropensityScoreWeightingParams(parameters: Optional[Dict[str, Any]] = None, process_parameters: bool = True, discrete_treatment: bool = False, random_state: Optional[int] = None)¶Bases: actableai.models.causal_inference_estimators.base.EstimatorBaseParams
Parameter class for Propensity Score Weighting estimator.
estimator_type = 'propensity'¶get_parameters(**kwargs) actableai.parameters.parameters.Parameters¶Returns the parameters space of the model.
method_name = 'backdoor.propensity_score_weighting'¶actableai.models.causal_inference_estimators.sparse_linear_dml.SparseLinearDMLParams(parameters: Optional[Dict[str, Any]] = None, process_parameters: bool = True, discrete_treatment: bool = False, random_state: Optional[int] = None)¶Bases: actableai.models.causal_inference_estimators.base.EstimatorBaseParams
Parameter class for Sparse Linear DML Model.
estimator_type = 'dml'¶get_parameters(cv, mc_iters, **kwargs) actableai.parameters.parameters.Parameters¶Returns the parameters space of the model.
The parameters space.