actableai.regression.cross_validation.run_cross_validation(regression_train_task: actableai.tasks.regression._AAIRegressionTrainTask, kfolds: int, cross_validation_max_concurrency: int, explain_samples: bool, presets: str, hyperparameters: Dict[str, Dict], model_directory: str, target: str, features: List[str], run_model: bool, df_train: pandas.core.frame.DataFrame, df_test: pandas.core.frame.DataFrame, prediction_quantiles: Optional[List[int]], drop_duplicates: bool, run_debiasing: bool, biased_groups: List[str], debiased_features: List[str], residuals_hyperparameters: Dict[str, Dict], num_gpus: Union[int, str], eval_metric: str, time_limit: Optional[int], drop_unique: bool, drop_useless_features: bool, feature_prune: bool, feature_prune_time_limit: Optional[float], num_trials: int, problem_type: str, infer_limit: float, infer_limit_batch_size: int) Tuple[Dict, Dict, Union[List, Dict], List, List, List]¶Run cross validation on Regression Task. Data is divided in kfold groups and each run a regression. The returned values are means or lists of values from each sub regression task.
important_features evaluate predictions predict_shap_values df_val leaderboard
Tuple[Dict, Dict, List, List, List, List]
actableai.regression.model.RegressionInference(model: actableai.models.inference.ModelType)¶Bases: actableai.models.autogluon.base.AAIAutogluonTabularInference[actableai.regression.model.RegressionModel, actableai.regression.model.RegressionMetadata]
actableai.regression.model.RegressionMetadata(*, features: List[str], feature_parameters: Dict[str, Any], problem_type: Literal['regression', 'quantile'], prediction_target: str, is_explainer_available: bool, intervened_column: Optional[str] = None, discrete_treatment: Optional[str] = None, quantile_levels: Optional[List[float]] = None)¶Bases: actableai.models.autogluon.base.AAIAutogluonTabularMetadata
problem_type: Literal['regression', 'quantile']¶quantile_levels: Optional[List[float]]¶actableai.regression.model.RegressionModel(autogluon_model, df_training: pandas.core.frame.DataFrame, explanation_model=None, intervention_model=None)¶Bases: actableai.models.autogluon.base.AAIAutogluonTabularModel
actableai.regression.quantile.GradientBoostQuantileRegressor(quantile_levels: list, **kwargs)¶Bases: autogluon.core.models.abstract.abstract_model.AbstractModel
actableai.regression.quantile.ag_quantile_hyperparameters()¶Returns a dictionary of Quantile Regressor Model for AutoGluon hyperparameters.
actableai.regression.OneHotEncodingTransformer(df)¶Bases: object
fit_transform(X, y=None)¶transform(X)¶actableai.regression.PolynomialLinearPredictor(path: Optional[str] = None, name: Optional[str] = None, problem_type: Optional[str] = None, eval_metric: Optional[Union[str, autogluon.core.metrics.Scorer]] = None, hyperparameters=None)¶Bases: autogluon.core.models.abstract.abstract_model.AbstractModel