actableai.timeseries.models.params.base.BaseParams(model_name: str, is_multivariate_model: bool, has_estimator: bool = True, handle_feat_static_real: bool = True, handle_feat_static_cat: bool = True, handle_feat_dynamic_real: bool = False, handle_feat_dynamic_cat: bool = False, hyperparameters: Optional[Dict] = None, process_hyperparameters: bool = True)¶Bases: object
Base class for Time Series Model Parameters.
build_estimator(*, ctx: Context, freq: str, prediction_length: int, target_dim: int, distr_output: DistributionOutput, params: Dict[str, Any]) Optional[AAITimeSeriesEstimator]¶Build an estimator from the underlying model using selected parameters.
Built estimator.
build_predictor(*, freq: str, prediction_length: int, target_dim: int, params: Dict[str, Any]) Optional[AAITimeSeriesPredictor]¶Build a predictor from the underlying model using selected parameters.
Built predictor.
get_hyperparameters() Parameters¶Returns the hyperparameters space of the model.
setup(use_feat_static_real: bool, use_feat_static_cat: bool, use_feat_dynamic_real: bool, use_feat_dynamic_cat: bool)¶Set up the parameters.
tune_config(prediction_length: int) Dict[str, Any]¶Select parameters in the pre-defined hyperparameter space.
actableai.timeseries.models.params.base.Model(value)¶Bases: str, enum.Enum
Enum representing the different models available.
constant_value = 'constant_value'¶deep_ar = 'deep_ar'¶deep_var = 'deep_var'¶feed_forward = 'feed_forward'¶gp_var = 'gp_var'¶multivariate_constant_value = 'multivariate_constant_value'¶n_beats = 'n_beats'¶prophet = 'prophet'¶r_forecast = 'r_forecast'¶tree_predictor = 'tree_predictor'¶actableai.timeseries.models.params.constant_value.ConstantValueParams(hyperparameters: Optional[Dict] = None, process_hyperparameters: bool = True, multivariate: bool = False)¶Bases: actableai.timeseries.models.params.base.BaseParams
Parameters class for the Constant Value Model.
build_predictor(*, prediction_length: int, target_dim: int, params: Dict[str, Any], **kwargs) AAITimeSeriesPredictor¶Build a predictor from the underlying model using selected parameters.
Built predictor.
get_hyperparameters() Parameters¶Returns the hyperparameters space of the model.
tune_config(prediction_length) Dict[str, Any]¶Select parameters in the pre-defined hyperparameter space.
actableai.timeseries.models.params.constant_value.MultivariateConstantValueParams(hyperparameters: Optional[Dict] = None, process_hyperparameters: bool = True)¶Bases: actableai.timeseries.models.params.constant_value.ConstantValueParams
Parameters class for the Multivariate Constant Value Model.
get_hyperparameters() Parameters¶Returns the hyperparameters space of the model.
actableai.timeseries.models.params.deep_ar.DeepARParams(hyperparameters: Optional[Dict] = None, process_hyperparameters: bool = True)¶Bases: actableai.timeseries.models.params.base.BaseParams
Parameter class for Deep AR Model.
build_estimator(*, ctx: Context, freq: str, prediction_length: int, distr_output: DistributionOutput, params: Dict[str, Any], **kwargs) AAITimeSeriesEstimator¶Build an estimator from the underlying model using selected parameters.
Built estimator.
get_hyperparameters() Parameters¶Returns the hyperparameters space of the model.
tune_config(prediction_length) Dict[str, Any]¶Select parameters in the pre-defined hyperparameter space.
actableai.timeseries.models.params.deep_var.DeepVARParams(hyperparameters: Optional[Dict] = None, process_hyperparameters: bool = True)¶Bases: actableai.timeseries.models.params.base.BaseParams
Parameter class for Deep VAR Model.
build_estimator(*, ctx: Context, freq: str, prediction_length: int, target_dim: int, params: Dict[str, Any], **kwargs) AAITimeSeriesEstimator¶Build an estimator from the underlying model using selected parameters.
Built estimator.
get_hyperparameters() Parameters¶Returns the hyperparameters space of the model.
tune_config(prediction_length) Dict[str, Any]¶Select parameters in the pre-defined hyperparameter space.
actableai.timeseries.models.params.feed_forward.FeedForwardParams(hyperparameters: Optional[Dict] = None, process_hyperparameters: bool = True)¶Bases: actableai.timeseries.models.params.base.BaseParams
Parameter class for Feed Forward Model.
build_estimator(*, ctx: Context, prediction_length: int, distr_output: DistributionOutput, params: Dict[str, Any], **kwargs) AAITimeSeriesEstimator¶Build an estimator from the underlying model using selected parameters.
Built estimator.
get_hyperparameters() Parameters¶Returns the hyperparameters space of the model.
tune_config(prediction_length) Dict[str, Any]¶Select parameters in the pre-defined hyperparameter space.
actableai.timeseries.models.params.gp_var.GPVarParams(hyperparameters: Optional[Dict] = None, process_hyperparameters: bool = True)¶Bases: actableai.timeseries.models.params.base.BaseParams
Parameter class for GP Var Model.
build_estimator(*, ctx: Context, freq: str, prediction_length: int, target_dim: int, params: Dict[str, Any], **kwargs) AAITimeSeriesEstimator¶Build an estimator from the underlying model using selected parameters.
Built estimator.
get_hyperparameters() Parameters¶Returns the hyperparameters space of the model.
tune_config(prediction_length) Dict[str, Any]¶Select parameters in the pre-defined hyperparameter space.
actableai.timeseries.models.params.n_beats.NBEATSParams(hyperparameters: Optional[Dict] = None, process_hyperparameters: bool = True)¶Bases: actableai.timeseries.models.params.base.BaseParams
Parameter class for NBEATS Model.
build_estimator(*, ctx: Context, freq: str, prediction_length: int, params: Dict[str, Any], **kwargs) AAITimeSeriesEstimator¶Build an estimator from the underlying model using selected parameters.
Built estimator.
get_hyperparameters() Parameters¶Returns the hyperparameters space of the model.
tune_config(prediction_length) Dict[str, Any]¶Select parameters in the pre-defined hyperparameter space.
actableai.timeseries.models.params.prophet.ProphetParams(hyperparameters: Optional[Dict] = None, process_hyperparameters: bool = True)¶Bases: actableai.timeseries.models.params.base.BaseParams
Parameter class for Prophet Model.
build_predictor(*, prediction_length: int, params: Dict[str, Any], **kwargs) AAITimeSeriesPredictor¶Build a predictor from the underlying model using selected parameters.
Built predictor.
get_hyperparameters() Parameters¶Returns the hyperparameters space of the model.
tune_config(prediction_length) Dict[str, Any]¶Select parameters in the pre-defined hyperparameter space.
actableai.timeseries.models.params.r_forecast.RForecastParams(hyperparameters: Optional[Dict] = None, process_hyperparameters: bool = True)¶Bases: actableai.timeseries.models.params.base.BaseParams
Parameters class for RForecast Model.
build_predictor(*, freq: str, prediction_length: int, params: Dict[str, Any], **kwargs) AAITimeSeriesPredictor¶Build a predictor from the underlying model using selected parameters.
Built predictor.
get_hyperparameters() Parameters¶Returns the hyperparameters space of the model.
tune_config(prediction_length) Dict[str, Any]¶Select parameters in the pre-defined hyperparameter space.
actableai.timeseries.models.params.tree_predictor.TreePredictorParams(hyperparameters: Optional[Dict] = None, process_hyperparameters: bool = True)¶Bases: actableai.timeseries.models.params.base.BaseParams
Parameters class for Tree Predictor Model.
build_estimator(*, freq: str, prediction_length: int, params: Dict[str, Any], **kwargs) AAITimeSeriesEstimator¶Build an estimator from the underlying model using selected parameters.
Built estimator.
get_hyperparameters() Parameters¶Returns the hyperparameters space of the model.
tune_config(prediction_length) Dict[str, Any]¶Select parameters in the pre-defined hyperparameter space.