actableai.timeseries.models.base.AAITimeSeriesBaseModel(prediction_length: int)¶Bases: abc.ABC
Time Series Model interface.
fit(dataset: actableai.timeseries.dataset.AAITimeSeriesDataset, model_params: List[actableai.timeseries.models.params.base.BaseParams], *, mx_ctx: Optional[mxnet.context.Context] = cpu(0), loss: str = 'mean_wQuantileLoss', trials: int = 1, max_concurrent: Optional[int] = 1, use_ray: bool = True, tune_samples: int = 3, sampling_method: str = 'random', random_state: Optional[int] = None, ray_tune_kwargs: Optional[Dict[str, Any]] = None, verbose: int = 1, fit_full: bool = True) Tuple[float, pandas.core.frame.DataFrame]¶Tune and fit the model.
predict(dataset: actableai.timeseries.dataset.AAITimeSeriesDataset, quantiles: List[float] = [0.05, 0.5, 0.95]) Dict[Tuple[Any, ...], pandas.core.frame.DataFrame]¶Make a prediction using the model.
UntrainedModelException – If the model has not been trained/tuned before.
Dictionary containing the predicted time series for each group.
refit(dataset: actableai.timeseries.dataset.AAITimeSeriesDataset, mx_ctx: Optional[mxnet.context.Context] = cpu(0))¶Fit previously tuned model.
UntrainedModelException – If the model has not been trained/tuned before.
score(dataset: actableai.timeseries.dataset.AAITimeSeriesDataset, num_samples: int = 100, quantiles: List[float] = [0.05, 0.5, 0.95], num_workers: Optional[int] = None) Tuple[Dict[Tuple[Any, ...], pandas.core.frame.DataFrame], Dict[Tuple[Any, ...], pandas.core.frame.DataFrame], pandas.core.frame.DataFrame]¶Evaluate model.
UntrainedModelException – If the model has not been trained/tuned before.
actableai.timeseries.models.estimator.AAITimeSeriesEstimator(estimator: gluonts.model.estimator.Estimator, transformation: Optional[actableai.timeseries.transform.base.Transformation] = None)¶Bases: object
Custom Wrapper around GluonTS Estimator.
train(dataset: actableai.timeseries.dataset.AAITimeSeriesDataset) actableai.timeseries.models.predictor.AAITimeSeriesPredictor¶Train estimator.
actableai.timeseries.models.evaluator.AAITimeSeriesEvaluator(*, target_columns: List[str], group_list: Optional[List[Tuple[Any, ...]]] = None, **kwargs)¶Bases: object
Custom Wrapper around GluonTS Evaluator.
actableai.timeseries.models.forecaster.AAITimeSeriesForecaster(date_column: str, target_columns: List[str], prediction_length: int, seasonal_periods: Optional[List[int]] = None, group_by: Optional[List[str]] = None, feature_columns: Optional[List[str]] = None)¶Bases: actableai.models.base.AAIBaseModel[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame], abc.ABC
Time Series Forecaster Model.
fit(model_params: List[actableai.timeseries.models.params.base.BaseParams], *, df: Optional[pandas.core.frame.DataFrame] = None, dataset: Optional[actableai.timeseries.dataset.AAITimeSeriesDataset] = None, mx_ctx: Optional[mxnet.context.Context] = cpu(0), loss: str = 'mean_wQuantileLoss', trials: int = 1, max_concurrent: Optional[int] = 1, use_ray: bool = True, tune_samples: int = 3, sampling_method: str = 'random', random_state: Optional[int] = None, ray_tune_kwargs: Optional[Dict[str, Any]] = None, verbose: int = 1, fit_full: bool = True) Tuple[float, pandas.core.frame.DataFrame]¶Tune and fit the model.
has_fit: bool = False¶has_predict: bool = True¶pre_process_data(df: pandas.core.frame.DataFrame, date_column: str, target_columns: List[str], prediction_length: int, seasonal_periods: Optional[List[int]] = None, feature_columns: Optional[List[str]] = None, group_by: Optional[List[str]] = None, inplace: bool = True, freq: Optional[str] = None) actableai.timeseries.dataset.AAITimeSeriesDataset¶Pre-process dataframe, handle datetime, and return a PandasDataset.
predict(*, df: Optional[pandas.core.frame.DataFrame] = None, dataset: Optional[actableai.timeseries.dataset.AAITimeSeriesDataset] = None, quantiles: List[float] = [0.05, 0.5, 0.95]) pandas.core.frame.DataFrame¶Make a prediction using the model.
UntrainedModelException – If the model has not been trained/tuned before.
Predicted time series.
refit(*, df: Optional[pandas.core.frame.DataFrame] = None, dataset: Optional[actableai.timeseries.dataset.AAITimeSeriesDataset] = None, mx_ctx: Optional[mxnet.context.Context] = cpu(0))¶Fit previously tuned model.
UntrainedModelException – If the model has not been trained/tuned before.
score(*, df: Optional[pandas.core.frame.DataFrame] = None, dataset: Optional[actableai.timeseries.dataset.AAITimeSeriesDataset] = None, num_samples: int = 100, quantiles: List[float] = [0.05, 0.5, 0.95], num_workers: Optional[int] = None) Tuple[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame, pandas.core.frame.DataFrame]¶Evaluate model.
UntrainedModelException – If the model has not been trained/tuned before.
actableai.timeseries.models.forecaster.TsForecastInference(model: actableai.models.inference.ModelType)¶Bases: actableai.models.inference.AAIBaseModelInference[actableai.timeseries.models.forecaster.AAITimeSeriesForecaster, actableai.timeseries.models.forecaster.TsForecastMetadata]
actableai.timeseries.models.independent_multivariate_model.AAITimeSeriesIndependentMultivariateModel(prediction_length: int)¶Bases: actableai.timeseries.models.base.AAITimeSeriesBaseModel
Multi-Target Time Series Model, can be used for univariate and multivariate forecasting. It will internally use one AAITimeSeriesSingleModel for each target, using the other target as features for every model.
It also keeps a multivariate model internally, and use it if the performances for one specific column are better.
fit(dataset: actableai.timeseries.dataset.AAITimeSeriesDataset, model_params: List[actableai.timeseries.models.params.base.BaseParams], *, mx_ctx: Optional[mxnet.context.Context] = cpu(0), loss: str = 'mean_wQuantileLoss', trials: int = 1, max_concurrent: Optional[int] = 1, use_ray: bool = True, tune_samples: int = 3, sampling_method: str = 'random', random_state: Optional[int] = None, ray_tune_kwargs: Optional[Dict[str, Any]] = None, verbose: int = 1, fit_full: bool = True) Tuple[float, pandas.core.frame.DataFrame]¶Tune and fit the model.
predict(dataset: actableai.timeseries.dataset.AAITimeSeriesDataset, quantiles: List[float] = [0.05, 0.5, 0.95]) Dict[Tuple[Any, ...], pandas.core.frame.DataFrame]¶Make a prediction using the model.
UntrainedModelException – If the model has not been trained/tuned before.
Dictionary containing the predicted time series for each group.
refit(dataset: actableai.timeseries.dataset.AAITimeSeriesDataset, mx_ctx: Optional[mxnet.context.Context] = cpu(0))¶Fit previously tuned model.
UntrainedModelException – If the model has not been trained/tuned before.
score(dataset: actableai.timeseries.dataset.AAITimeSeriesDataset, num_samples: int = 100, quantiles: List[float] = [0.05, 0.5, 0.95], num_workers: Optional[int] = None) Tuple[Dict[Tuple[Any, ...], pandas.core.frame.DataFrame], Dict[Tuple[Any, ...], pandas.core.frame.DataFrame], pandas.core.frame.DataFrame]¶Evaluate model.
UntrainedModelException – If the model has not been trained/tuned before.
actableai.timeseries.models.predictor.AAITimeSeriesPredictor(predictor: gluonts.model.predictor.Predictor, transformation: Optional[actableai.timeseries.transform.base.Transformation] = None)¶Bases: object
Custom Wrapper around GluonTS Predictor.
make_evaluation_predictions(dataset: actableai.timeseries.dataset.AAITimeSeriesDataset, num_samples: int) Tuple[Iterable[actableai.timeseries.forecast.AAITimeSeriesForecast], Iterable[Union[pandas.core.frame.DataFrame, pandas.core.series.Series]]]¶Wrapper around the GluonTS make_evaluation_predictions function.
predict(dataset: actableai.timeseries.dataset.AAITimeSeriesDataset, **kwargs) Iterable[actableai.timeseries.forecast.AAITimeSeriesForecast]¶Run prediction.
actableai.timeseries.models.single_model.AAITimeSeriesSingleModel(prediction_length: int)¶Bases: actableai.timeseries.models.base.AAITimeSeriesBaseModel
Simple Time Series Model,
fit(dataset: actableai.timeseries.dataset.AAITimeSeriesDataset, model_params: List[actableai.timeseries.models.params.base.BaseParams], *, mx_ctx: Optional[mxnet.context.Context] = cpu(0), loss: str = 'mean_wQuantileLoss', trials: int = 1, max_concurrent: Optional[int] = 1, use_ray: bool = True, tune_samples: int = 3, sampling_method: str = 'random', random_state: Optional[int] = None, ray_tune_kwargs: Optional[Dict[str, Any]] = None, verbose: int = 1, fit_full: bool = True) Tuple[float, pandas.core.frame.DataFrame]¶Tune and fit the model.
predict(dataset: actableai.timeseries.dataset.AAITimeSeriesDataset, quantiles: List[float] = [0.05, 0.5, 0.95]) Dict[Tuple[Any, ...], pandas.core.frame.DataFrame]¶Make a prediction using the model.
UntrainedModelException – If the model has not been trained/tuned before.
Dictionary containing the predicted time series for each group.
refit(dataset: actableai.timeseries.dataset.AAITimeSeriesDataset, mx_ctx: Optional[mxnet.context.Context] = cpu(0))¶Fit previously tuned model.
UntrainedModelException – If the model has not been trained/tuned before.
score(dataset: actableai.timeseries.dataset.AAITimeSeriesDataset, num_samples: int = 100, quantiles: List[float] = [0.05, 0.5, 0.95], num_workers: Optional[int] = None) Tuple[Dict[Tuple[Any, ...], pandas.core.frame.DataFrame], Dict[Tuple[Any, ...], pandas.core.frame.DataFrame], pandas.core.frame.DataFrame]¶Evaluate model.
UntrainedModelException – If the model has not been trained/tuned before.